Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose a precise duality between pure de Sitter quantum gravity in2+1 dimensions and a double-scaled matrix integral. This duality unfolds in two distinct aspects. First, by carefully quantizing the gravitational phase space, we arrive at a novel proposal for the quantum state of the universe at future infinity. We compute cosmological correlators of massive particles in the universe specified by this wavefunction. Integrating these correlators over the metric at future infinity yields gauge-invariant observables, which are identified with the string amplitudes of the complex Liouville string [S. Collier et al., arXiv: 2409.17246]. This establishes a direct connection between integrated cosmological correlators and the resolvents of the matrix integral dual to the complex Liouville string, thereby demonstrating one aspect of the dS_3 /matrix integral duality. The second aspect concerns the cosmological horizon of the dS static patch and the Gibbons-Hawking entropy it is conjectured to encode. We show that this entropy can be reproduced exactly by counting the entries of the matrix.more » « lessFree, publicly-accessible full text available January 1, 2026
-
A bstract $$ T\overline{T} $$ T T ¯ deformed conformal field theories can be reformulated as worldsheet theories of non-critical strings. We use this correspondence to compute and study the $$ T\overline{T} $$ T T ¯ deformed partition sum of a symmetric product CFT. We find that it takes the form of a partition sum of a second quantized string theory with a worldsheet given by the product of the seed CFT and a gaussian sigma model with the two-torus as target space. We show that deformed symmetric product theory admits a natural UV completion that exhibits a strong weak coupling ℤ 2 duality that interchanges the momentum and winding numbers and maps the $$ T\overline{T} $$ T T ¯ -coupling λ to its inverse 1/ λ . The ℤ 2 duality is part of a full O(2, 2, ℤ)-duality group that includes a PSL(2, ℤ) acting on the complexified $$ T\overline{T} $$ T T ¯ coupling. The duality symmetry eliminates the appearance of complex energies at strong coupling for all seed CFTs with central charge c ≤ 6.more » « less
-
A bstract A two-dimensional CFT dual to a semiclassical theory of gravity in three dimensions must have a large central charge c and a sparse low energy spectrum. This constrains the OPE coefficients and density of states of the CFT via the conformal bootstrap. We define an ensemble of CFT data by averaging over OPE coefficients subject to these bootstrap constraints, and show that calculations in this ensemble reproduce semiclassical 3D gravity. We analyze a wide variety of gravitational solutions, both in pure Einstein gravity and gravity coupled to massive point particles, including Euclidean wormholes with multiple boundaries and higher topology spacetimes with a single boundary. In all cases we find that the on-shell action of gravity agrees with the ensemble-averaged CFT at large c . The one-loop corrections also match in the cases where they have been computed. We also show that the bulk effective theory has random couplings induced by wormholes, providing a controlled, semiclassical realization of the mechanism of Coleman, Giddings, and Strominger.more » « less
-
null (Ed.)A bstract We obtain an asymptotic formula for the average value of the operator product expansion coefficients of any unitary, compact two dimensional CFT with c > 1. This formula is valid when one or more of the operators has large dimension or — in the presence of a twist gap — has large spin. Our formula is universal in the sense that it depends only on the central charge and not on any other details of the theory. This result unifies all previous asymptotic formulas for CFT2 structure constants, including those derived from crossing symmetry of four point functions, modular covariance of torus correlation functions, and higher genus modular invariance. We determine this formula at finite central charge by deriving crossing kernels for higher genus crossing equations, which give analytic control over the structure constants even in the absence of exact knowledge of the conformal blocks. The higher genus modular kernels are obtained by sewing together the elementary kernels for four-point crossing and modular transforms of torus one-point functions. Our asymptotic formula is related to the DOZZ formula for the structure constants of Liouville theory, and makes precise the sense in which Liouville theory governs the universal dynamics of heavy operators in any CFT. The large central charge limit provides a link with 3D gravity, where the averaging over heavy states corresponds to a coarse-graining over black hole microstates in holographic theories. Our formula also provides an improved understanding of the Eigenstate Thermalization Hypothesis (ETH) in CFT 2 , and suggests that ETH can be generalized to other kinematic regimes in two dimensional CFTs.more » « less
An official website of the United States government
